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Semianalytic Numerical Studies 
of Turning Points Arising 

in Stiff Boundary Value Problems 

By W. L. Miranker * and J. P. Morreeuw 

Abstract. A numerical algorithm for solving stiff boundary value problems with turn- 
ing points is presented. The stiff systems are characterized as singularly perturbed dif- 
ferential equations. The numerical method is derived by appropriately discretizing the 
boundary layer and connection theory for such systems. Numerical results demonstrate 
the effectiveness of the method. In many cases the calculation proceeds with mesh in- 
crements which are orders of magnitude larger than those used by other known methods. 

1. Introduction. Numerical methods for approximating the solution of boundary 
value problems subjected to singular perturbations have recently begun to appear (cf. 
F. W. Dorr [1 ], A. M. Il'in [3], R. E. O'Malley [5], C. E. Pearson [6], as well as unpub- 
lished work of H. Keller and H. Kress). 

The canonical form of such a problem is 

M -y+ f(x)y' + g(x)y = h(x), <x < 1, 
(1I. 1) 

y(O)=a y(Al) 

where e is considered to be small. 
Singularly perturbed problems arise commonly in applications so that numerical 

methods for approximating their solutions are of considerable interest. The interest is 
all the more enlarged when the observation is made that such problems comprise 
classes of problems of the so-called stiff type. Thus, numerical methods developed for 
singularly perturbed problems will automatically be of use for the numerical solution 
of stiff problems. This connection between these two classes of problems was noted 
already by one of us (cf. [4]) in a study concerning stiff initial value problems. In 
that study, as in the present one, the asymptotic methods, usually called boundary 
layer techniques, known to describe the solution of the singularly perturbed problem, 
are exploited to generate the numerical methods. 
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The boundary value problem (1.1) is further complicated enormously, when 
compared to the initial value problem, by the presence of points where f vanishes, 
the so-called turning points. The analytic value of the solution in the presence of such 
points as well as the relationship between the values of the solution on adjoining sides 
of such points is the subject of the so-called connection theory (i. e., WKB analysis, cf. 
R. O'Malley [5]). 

Our numerical methods deal with the turning points by casting the connection 
theory into a numerically exploitable form, moreover, in combination with the bound- 
ary layer methods just referred to. 

The resulting numerical methods inherit the favorable feature of the analytic 
methods, namely, they improve rather than degrade with increasing stiffness (decreas- 
ing e) in the problem. Moreover, the mesh increments which are used are frequently 
orders of magnitude larger than those required by other numerical methods for similar 
problems. 

In the present study, our results concern only the linear form (1.1) of the prob- 
lem. We also set aside the especially difficult phenomena of resonance in the solutions 
which occurs when f has multiple zeros or when at a simple zero of f the quantity 
g/f' is an integer. 

Our numerical method provides a pointwise approximation to the solution y of 
(1.1) which is O(Ax). The approximation is probably uniform within O(Ax) in 
cases where the maximum principle prevails for (1.1). Improvements in the order of 
the approximation are directly obtainable, as may be seen. 

In Section 2, we review the asymptotic theory of turning points which describes 
the structure of the solution of (1.1). We do this in a form which is designed for the 
numerical work to follow. In Section 3, we give the formal presentation of our algo- 
rithm consisting of a discretization of the boundary layer methods and connection the- 
ory developed in Section 2. In Section 4, we comment on limitations of the algorithm 
and we present an algebraic point of view which leads to a rapid iteration method for 
executing the algorithm introduced in Section 3. In Section 5, we give the results of 
calculations performed on a large number of cases. 

2. Analytic Aspects of the Solution. In this section, we derive various analytic 
properties of solutions of (1.1). 

2.1. Preliminaries. We proceed by introducing some terminology by means of 
the following definitions. In these definitions, all points and sets lie in [0, 1]. 

Definition 2.1. A point x is said to be an irregular point if in every neighbor- 
hood of x, the function f(x) is neither larger than a positive number nor smaller 
than a negative number. 

Remark 2.1. Turning points are irregular points. 
Definition 2.2. An interval of regularity is an interval containing no irregular 

points. 
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Definition 2.3. A neighborhood of irregularity is an open interval containing 
exactly one irregular point. 

Definition 2.4. A right (left) sided neighborhood of irregularity is an open interval 

containing no point of irregularity and whose greatest lower (least upper) bound is a point 
of irregularity. When we need not specify the right or left sidedness, we will refer to 

these neighborhoods as demineighborhoods of irregularity. 
2.2. Form of the Solution in an Interval of Regularity. In a closed interval of 

regularity, the solution y of (1.1) may be written in the form 

(2.1) y=u +v 

with 

(a) v= eClew, 

(2.2) (b) '= f 

(c) Mu = h, 

(d) Mv= O. 

From these, in turn, we obtain 

(e) ew" - d(fw)/dx + gw = 0. 

Introducing the operators L and its adjoint L* through 

Lz fdz/dx + gz, 
(2.3) LL*z - d(fz)/dx +gz, 

we may write (2.2) (c) and (2.2) (e), respectively, as 

(2.4) (a) eu" + Lu = h, 

(b) ew" + L*w= 0. 

Indeed, (2.2) (e) may be written as 

(2.4) (c) M w = 0, 

where M * is the adjoint of M. 
Remark 2.2. The decomposition (2.1) is unique up to 0(e) under suitable regu- 

larity conditions on u, v, Lu and e-?5e L*w. 

To see this, let y = uo + v0 and y = u1 + v1 be two such decompositions. 
Let u = u1 - uo and v 1 - v0 so that u v= O. Then 

(2.5) 0 = LQu ?v)= Lug + (e- 0/ L *(eO v - v 

Solving (2.5) for v and using suitable regularity conditions as cited gives v = 0(e). 

Using this in turn along with up ? ve = 0, we can obtain the same result for u 

demonstrating the remark. 
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2.3. Form of the Solution in a Neighborhood of Irregularity. We will now re- 
view the connection theory which characterizes the behavior of solutions of (1.1) in 
neighborhoods of irregularity. We will follow the development of R. O'Malley with modi- 
fications which will be of importance for the numerical considerations to follow. 

We will limit ourselves to the case in which f has nonvanishing right and left 
sided derivatives at the irregular point, hereafter denoted by x*. In each demineighbor- 
hood of x*, f may be written as 

(2.6) f(x) = a(x - x*) [+ 1/2 f"(x* + O(x - x*)) (x - x*)/a ], 

where here and hereafter 

(2.7) a = f'(x*). 

We introduce the new variable 7r in place of x through 

(2.8) 77 = 77(x)= [2Iaf f(s)ds] 

where 

(2.9) (x - x*) (x) > 0. 

Note that q(x*) = 0, i?'(x*) = 1 and that 71' > 0 in the demineighborhood. 
Thus, the change of variables is a valid one and, from (1.1), we obtain 

(2.10) ey7r + (aqt - "/(n')2)yn + a 2 g(x) Y ) h(x) 

The solutions of (2.10) are characterized by the following Proposition. 
PROPOSITION. There exist functions M(rq, e), N(r7, e), h (m?, e) and a(e), ana- 

lytic in e and continuously differentiable in i7 such that 

(2.11) y (q, e) = M(r?, e) z + eN(il, e) z 

is a solution of (2.10) where z is a solution of 

(2.12) ez77 + ar7z,, + (b + eu(e))z = h(rq, e). 

Here and hereafter 

(2.13) b =g(x*). 

Proof. With 

(a) t(r1) = - U/(n)2 

(2.14) (b) 0(r1) =(a292g(x) - x2(f'(x))2b) l?7x2(f'(x))2, 
(2.10) may be written as 

(2.15) eyn>7 + (aT? + e~(T?))yn + (b + Y0(T?))Y = h(X)/(7?')2. 

Inserting (2.1 1) into (2.15) and using (2.12), we get 

(2.16) Az+eBz +?C=0, 
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where 
(a) A = rj(aM,, + OM) + e(Mr,1, + ?MO - aM- (b + ea)(2Nl + UN)), 

(2.17) (b) B = 2M,, - (Nar )r, + yN?+ (M-Narl) + e(Nrn, + ?NT - aN), 

(c) C = Mh - h + e(Nnh +? Nh + (Nh)77). 
Setting 

00 00 

(2.18) M= I e1Mi and N= E c'Ni, 

then the terms of order zero in e in (2.17)(a) and (2.17)(b) yield 

(2.19) (a) aMO,7 + OMo = 0, 
(b) 2MOn - (Noarq), + O1No + ?(Mo - aNlon) = 0. 

Let MO be the solution of (2.19)(a) satisfying MO(0) = 1. Then the solution of 
(2.19)(b), which is bounded at r1 = 0, is given by 

(2.20) aNorn = -- exp fo (0/a - t) d7. 

Similarly, to order i in e, the Eqs. (2.17) yield 

(2.21 ) (a) r(aMi, . + OM) - - MO +?K1 K (l7) = 0, 

(b) - (Nia'q)' + (0/a) a'qN1 - tar7N, + 2Mi + vMi + Ji 0= 

Here, Ki- 1 which depends on MO, , Mi 1, No, , N_ 1 , ao, **a- 2 is con- 
tinuous at 71 = ?- Jji 1 depends on No, * * *, Nj_ 1, iuo, . 

I *,i- 2. 
Upon choosing ai- 1 = Kj_ 1(0), (2.2 1)(a) may be solved for Mi which is con- 

tinuous at 71 = 0. With this Mi, (2.21)(b) may be solved in turn for Nia'q with Ni 
being bounded at 71 = 0. In this manner, M and N may be constructed. Similarly, 

- = o hi Ce may also be obtained. 
This demonstrates the Proposition. 
If z is a solution of (2.12) such that ez, is bounded, then from (2.11) 

(2.22a) y = M z + eNozz + 0(e). 

Differentiating (2.11) with respect to 7z and using (2.12) and the boundedness of 

eZ, gives 

(2.22b) Yn = (MO - No ar)z, + 0(1). 

From (2.22) it is then clear that if we restrict our attention to quantities deter- 
mined up to 0(e), then we may use z, obtained from the restriction of (2.12), to 

(2.23) ez777 + arlz,1 + bz = h O(n) 

This equation possesses a solution of the form, hO(0)/b + 0(71) + 0(e), whose 
derivative, moreover is bounded with respect both to 71 and to e. Thus, all bounded 
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solutions y of our original Eq. (1.1) may be written in the form 

(a) y = MO(z + h(x*)/g(x*)) + eNozl + 0(e, 71), ** 
(2.24) 

(b) ye = (MO - Noarn)zr, + ?(l)( A), 

where here z is a bounded solution of the homogeneous equation (2.23), viz. 

(2.25) eZ 77 + a'qz + bz = 0. 

For the bounded solution, it may be verified that 71z7 as well as ez7,7 are bounded. 
Thus, since x - 71 = 0(712), we find that z(x) - z(77) = 0(71) and ez,(x) - ezn(i1) 
O(77). Using these observations and the regularity of MO and Now we may write 
(2.24) as 

(2.26) (a) y(x) = MO(z + h(x*)/g(x*)) + eNozx + O(, x -x*) 

(b) y'(x) = (MO - Noa(x - x*))zx + 0(1)(,x). 

As we will see further on, we may adopt the normalization Mo(x*) = 1. Thus, (2.26) 
may be further simplified to 

(a) y = z + h(x*)/g(x*) + eNO(0)z' + 0(e, x - x 
(2.27) 

(b) y= z + O(1)(EXX*), 

where z is a solution of 

(2.28) ez" + a(x - x*)z' + bz = 0. 

We are now directed to the solution of Eq. (2.28). 
This equation has the parabolic cylinder functions for its solutions. We will now 

summarize the properties of these solutions which we will require for our numerical 
method. 

In the following Table 2.1, u1 and u2 are approximations to independent solu- 
tions of (2.28) (which are bounded in neighborhoods of x*). Here and throughout 
p = b/a. From this table, we can deduce properties of z + eNO(O)z' and z' needed 
for y and y' in (2.27) by taking appropriate (and as yet unspecified) combinations 
of u, and u2. We recombine the entries in Table 2.1 calling them Yj, i = 1, 2 
where 

(a) Y1 = + eNo(O)u i= 1, 2, 
(2.29) 

(b) Y= u, i = 1,2. 

These quantities are needed for determining y (as in (2.27)). In terms of our original 
notation, the relevant data are then displayed in the following Table 2.2. 

In Table 2.2, w2 and w1 are, respectively, normalized solutions of Lw = 0 

** f = O(x,y) - f/(lIx+IyI) < const for (IyI+JIy) < const. 
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and L*w = 0. The normalization is such that there exist constants pi for i = 1, 2 
such that 

__ __ __fw 1 (2.30) lim 2 = lim =1. 
x-x>* IX-x*IP2 x- x* Ix-x*WP1 

Thus, from (2.27), we see that in each demineighborhood of irregularity the so- 
lution of (1.1) is a combination of Y1 and Y2, viz. 

1:2 Restrictions 

(x) exp 
[-a 

fxx do] Ix - x*l ' 1 
I 

UX [a ex J_ a 
fxoda] Sig (x - 

x*) I x x* IP - Sig (x - 
x*)P px - x* I P- Ix 

>> 
I 

>> 

)2 r(1 /2) Re R e) )2 (( ) )(( + p)/2) 

u'(x*) sig (x -x)2 2- F(- 1/2) Re ((a ) 
p 

/) sig (x x*)2-(P+ 1)/2 r(- 1/2) Re(( a (p+ 1)/2 

rF((l - p)/2) E (p/2) \ E/ 

TABLE 2.1. Properties of Solutions of (2.28) 

Y. (x) Y2 (x) Restrictions 

Y(x) exp [-fxe f(s) ds] w(x) W2(X) + O(e/(x - x*), x - x*) 

Sig (x - x) F(1 /2) a, a\P"1)/2\ F(1/2) / -a / 

Y(O) ~~Re Re (( Y() 2e (1 (I p12) (2e ) ((l + p)/2) ((2e) ) 

fAx) 
F t lg x 

Y(x) - exp [- eJ f(s)ds] w (x) 2(X) ? 0(1) 

I F) (- 1/2) kk/c-P F (- 1/2) Sg( )R ( le( )2 Yt(O) 2e ]'((1 - p)/2) ( /2) sig2(x -x)Re((-a/2e)(P) )/2) 

TABLE 2.2 
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(a) h(x) + XY2 + MY1 + O(6/(x - x*), X - X*) 

(2.31) 
(b) y'= py + 0()(E(X-X*),x-X*) 

Thus, we see that up to terms which are 0(1)( ,x- ), Y1 may be identified 
with the function v and Y2 with the function u introduced in (2.1). Thus, in an 
appropriate sense, the values of u and v and their derivatives at an irregular point 
may be read off from Table 2.2. 

This concludes our description of the solution of (1.1) in a neighborhood of irreg- 
ularity. 

3. Description of the Algorithm. In this section we derive our numerical method. 
3.1. Preliminaries. Our calculation will be performed on the mesh of points, 

{x I i =O, A} where 

(3.1) 0 = To < xi < < XN 1 

The mesh points consist of three types: irregular points, neighboring points and 
regular points. These are defined as follows: 

Definition 3.1. An irregular mesh point is an irregular point in the sense of Defi- 
nition 2.1. We assume that all irregular points are to be found among the mesh points. 

We also assume that each pair of irregular mesh points are separated by at least two 
points of the mesh. 

Definition 3.2. xi is a neighboring mesh point if either xi+1 or xi-, are 
irregular points. 

Definition 3.3. xi is a regular mesh point if it is neither an irregular mesh point 
nor a neighboring mesh point. 

We will hereafter drop the qualifying word, mesh, associated with these points, 
since no confusion will result. 

Let f denote a discretization of f That is a function which interpolates f on 
the mesh. Similarly, u and v will denote discretizations of u and v respectively. 

f will denote a primitive of f. 
In addition to the usual forward and backward divided difference operators, which 

will be denoted by a subscript x or x respectively, we will make use of a directional 
divided difference operator used by F. W. Dorr [1]. This is given by 

(3.2) a>( ) {a(t)x, if a>O, 

(3.2) dual of thisopeoa(), if av by. 

The dual of this operator is given by 
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3.2. The Discretization at a Regular Point. At a regular point xi, Mu = h and 

Mv = 0 are discretized as 

(3.4) e (u )X X-, 
+ fi ax (U^)i + 

giuio 
= hi 

and 

(3.5) e-9o i/e [c( e9/e)xX i - 
0 (f e9? l)1 ? gj(e e)j = ? 

respectively. 
Since (3.5) may be multiplied by a constant, the choice of the primitive < oc- 

curring therein is arbitrary. 
Remark 3.1. The directionally discretized terms in (3.4) and (3.5) respectively 

involve ui and ui+1 and vi and vi 1 or they involve ui and ui 1 and vi 
and vi+ 1 depending on the sign of f 

3.3. Treatment at a Neighboring Point. The principal difficulty at a neighboring 
point xi involves the evaluation of the second divided difference. We are ill advised 
to use (3.4) and (3.5) at a neighboring point since the terms ()x-i will involve 
values at both an irregular point and at a neighboring point, these points delimiting a 
region of rapid change of u and/or v, when e is small. Let xi* denote the irreg- 
ular point for which xi is a neighbor. 

We proceed to obtain an alternate approximation to the second derivatives. Let 
r denote the second derivative of u. Then (2.2)(c) becomes 

(3.6) er + fu' + gu= h. 

Differentiating (3.6) gives 

(3.7) fr + (f' + g)u' + g'u h' - er'. 

Combining (3.6) and (3.7) gives 

(3.8) r f2 - E(f' + g)] = (gu - h) (f' + g) + f [(h' - er') + g'u]. 

If the last bracket here is bounded at xi, we may neglect it, since its coefficient f 
is small at xi; (provided of course that xi - xi* I is small, which we assume). Their 
for r, we have the approximation 

(3.9) er = Xl(gu - h)5 

where 

(3.10) x= e(g + f )/(f2 - e(f + g)). 

Similarly, denoting the second derivative of w = e/ Iv by s, we obtain from 
(2.2)(d) the following four equations in place of (3.6), (3.7), (3.9) and (3.10), respec- 
tively, 

(3.11) es -fw'+(g-f')w =O, 
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(3.12) - fs + (g- 2f')w' + (g-f')'w=- es' 

and 

(3.13) es = x2(g - f')w 

where 

(3.14) X2= e(g - 2f / f2 - E(g - 2f')). 

Using r and s in (3.4) and (3.5), respectively, in place of the divided second 
differences, Remark 3.1 shows that one of the resulting equations does not make use 
of data at the irregular point. We use this equation to calculate the associated function 
(u or w) as the case may be at the neighboring point. We call this function the prin- 
cipal function (relative to this neighboring point). The remaining function is called the 
minor function. 

Let y denote the principal function (u or e(< fi*)Iev, as the case may be) 
and let y denote the minor function. 

Consider first the case where y is U. Then write (3.6) as 

(3.15) Ly=h-er. 

We may solve this equation to obtain 

(3.16) Y = X + Aw, 

where X is a particular solution to (3.15), ji a constant and w is a normalized 
solution (in the sense of (2.30)) of Ly = 0. Writing 

(3.17) Y= X ?+ w 

we may approximate X as 

(3.18) X = (hi - eri)/gi, 
while 

(3.19) wi= i -xi* 

In (3.18), r is computed by means of (3.9) and (3.10) and in (3.9) we may set 
u equal to A~ which is known to us. Since y is the principal function, A~ is 
known and so then from (3.17)-(3.19), ji is known. 

In the case that the principal function y is identified with e('9 fi*)Iev, we 
similarly derive (3.17). But now 

(3.20) X = - esi/gi 

approximately; and wi is obtained from the normalized solution of L*y = 0, and is 

(3.21) wi = (1/fi) lxi - xi* g/ilfi. 

For the minor function, the same development may be made, representing it as 

(3.22) + 
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X is computed as in (3.18), however since y is not known, we use a prior value 
of y (i.e., y from the previous iteration). The Eqs. (3.17)-(3.21) hold for the 
minor function with bars inserted as necessary. However, because y is the minor 
function, Y1 is not known and so ji is unknown as well. To determine y1, we 
must determine ji and this will be done in the following paragraph. 

3.4. Treatment at an Irregular Point. Our study of the principal function at neigh- 
boring points permits us to express this function as 

(3.23) X_ + ji w_ 
to the left of an irregular point and as 
(3.24) ?+ + w+ w+ 

to the right. Similarly, the minor functions to the left and to the right of an irregular 
point may be written as 

(3.25) ? ,_ w_ 

and 
(3.26) X+ +i+ w+ 
respectively. 

We may identify X+ ? ? w + ?+ + w + + j7+ w+ with (2.3 1)(a) as an approxima- 
tion to the solution y, to one side of an irregular point. From Table 2.2 as xi e+ 

xi, the limiting values of Y1(x) and Y2(x) are known and approximate the normal- 
ized solutions (at xi ) which are w+ and w+ in some order. Call Y1 and Y2 
the functions Y and Y as the case may be. Thus, by the continuity of y at an 
irregular point, we have 

(3.27) k + X ? +jY(O) ? it Y(O) = ? + Y(O) + (0). 

Similarly, from (2.3 1)(b) and the continuity of y' at an irregular point, we have 

(3.28) ,u_ Y' (0) + Y'(0) = + Y(O) + ? + + (0). 

(3.27) and (3.28) form a system for the determination of ,+ and ,i_. Except 
in the case where the determinant of this system vanishes (an analogue of the resonance 
phenomena), we may solve this system for ,i+ and ,i_. 

4. Execution of the Algorithm. 
4.1. Comments and Limitations. (i) As we have remarked above, there must be 

at least two mesh points between each pair of irregular points. 
(ii) The treatment of neighboring points and irregular points required division by 

g (cf. (3.20)). Thus, as stated, the algorithm imposes the constraint that g not van- 
ish in the vicinity of an irregular point. Nevertheless, by ignoring the status of neighbor- 
ing and irregular points and applying (3.4) and (3.5) to all points, an alternate algorithm 
is formally defined. Although we have not tested it, this alternate algorithm is probably 
reasonable in some cases. 



1028 W. L. MIRANKER AND J. P. MORREEUW 

(iii) At an irregular point, the values of the right and left sided derivatives of f 
(as well as the values of g) must not cause the vanishing of the determinant arising 
out of (3.27) and (3.28), for solving for P+ and p - (i. e. the discrete analogue of the 
resonance phenomenon, already referred to, must be avoided). 

(iv) If algorithmic resonance but not real resonance does occur, it can be elimi- 
nated by small changes in f in the vicinity of irregular points. The effect of these 

changes is likely to result in small changes in the numerical results. For example, this 
is the case for those problems for which the maximum principle maintains. 

4.2. An Algebraic Point of View. The algorithm yields in effect a linear system 
for the vectors ui and vi. A special ordering of this linear system results in a coef- 
ficient matrix which in turn makes for an efficient solution procedure. 

If fi < 0, we call ui a rightward function, while we call it a leftward function 
if fi > 0. We use the reverse designations for vi. (This terminology devolves from 
the directional divided differences (3.2) and (3.3) as well as the wave-like behavior of 
the solution.) 

Now, reorder the uii and vi so that all the rightward functions are contiguous 
and likewise the leftward functions. We also preserve the ordering of the subscript, i, 
within each of the two groups. The matrix C of the resulting linear system has the 
Following form. 

0 

? (1 C2 C3 1 ? C, 2 31 

RIGHTWARD FUNCTION LEFTWARD FUNCTION 

FIGURE 4.1. Schematic of the matrix of the linear system. 
The tj correspond to the turning points 
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Thus C is a five diagonal matrix. The entries along the diagonals a and e are 
sparse and come from endpoints and the coupling in (3.27) and (3.28) (irregular points). 
The off-diagonal, b, has terms which are 0(e) corresponding to the rightward func- 
tions while the off-diagonal, d, has terms which are 0(e) corresponding to the leftward 
functions. (These 0(e) terms result respectively from the second divided difference 
terms in (3.4) or (3.5) as the case may be, and are schematized in Fig. 4.1 by the dashed 
segments.) 

This form of C suggests a relaxation procedure which consists of pairs of passes 
for solving the associated linear system. 

(i) First Pass. Relax from left to right the equations corresponding to rightward 
functions. 

(ii) Second Pass. Relax from right to left the equations corresponding to the left- 

ward functions. 
Coupling between the two passes occurs through the far off-diagonals a and e. 

This method essentially results in a rapid movement of information flow by relaxation 
in the system, since the 0(e) coefficients of C are arranged so that they do not slow 
down this flow. Because the nonzero entries in C are of widely different magnitude, a 
relaxation step produces widely varying corrections in different variables. We found it 
necessary to smooth out this instability by use of the method of false position. In par- 
ticular, let 2 = (i, .2 , I Un, Vl, *., on) and let the result of a relaxation with- 
out smoothing be represented by F(m- 1). Including the smoothing we have 

A. ~~Fj(?M 1)n )?- Fj(?m) tm - m+1- 
F- 

( 
m- 1 + Fj(?m - l)- F(m) 

For small e, the algorithm converges in a few iterations (4 or 5 for the cases of 
interest); the fewer, the smaller e. 

5. Numerical Results. In subsection 5.1, we characterize the errors arising 
through use of our algorithm corresponding to various cases for the equation Cy" + 
axy' + by = 0. In subsection 5.2, we give a compendium of examples for linear equa- 
tions with a variety of variable coefficients. We also include some of the results of 
C. E. Pearson [6] for comparison. 

5.1. Solution of the Boundary Value Problem ey" + axy' + by = 0 with 
y(- 1) = 1, y(1) = 2. We take e = 10- 7. Two typical cases are 

(i) a = - 1, b < 0, 

(ii) a = 1, b = - 1.0001(~ 1). 

In case (i), the algorithm gives zero at all interior mesh points if b is not a 
(machine) integer. This corresponds to an error of less than 10-8. 

In case (ii), the exact solution is linear to within 10-4 on each side of the turn- 
ing point, where it vanishes. Fig. 5.1 displays the approximate solution. In Fig. 5.2, we 
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plot the maximum error versus ?, the mesh increment Ax. The linearity of the plot 
in Fig. 5.2 is not surprising since all of the discretization procedures in the various as- 
pects of the algorithm were of the first order in LAx. 

Y1 

2- 

Exact solution of I0-7y+xH-1.0001y=O 
FIGURE 5.1. Approximate solution in case (ii) 

ERROR 

0.05 - 

0.025 - 

0.025 0.05 0.1 Increment Ax 

141 81 41 21 No.of points N 
Numerical error for 10-7t xy- 1.0001 y=O 

FIGURE 5.2. Maximum error Ax in case (ii) 

5.2. Variable Coefficient Cases. In this subsection we present a sequence of figures 
exhibiting the coefficient f(x) of the term y', and the corresponding results. 

Pearson [6] has studied some of these cases by a refinement method. We get ex- 
actly the same results as he in the cases: 5.3, 5.5, 5.6, 5.7; and close to his results in 
cases: 5.4, 5.8, 5.9, 5.10, 5.11, 5.12. We compare also our result to an exact solution 
in cases: 5.14, 5.15, 5.16. In all these cases, the difference goes to zero with the mesh 
increment and, when the maximum principle is satisfied, is less than the mesh increment. 
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1.5- 
Q.5 1.0- 

0 0<=- 0 
-0.5 1 -10 

f (x)=x3-1/2 x f(x)=x+1/2 x2 

Y, y 

2- ~~~~~~~~~~2- 
A~x=O.I 

~~,x=0.05 ~~~~Pearson's I Ax~~~~~0.05 ~~~~I result 

0- 0- 
-I 0 I -I 0 I 

1067+(x3- 1/2 x)+y(-I)y0 10 7+(x+1/2 x2)+(-1+1/2 X cos x)=O 

FIGURE 5.3 FIGURE 5.4 

f f 

0.5 0.5 

-0.5. -0.5- 
f (x)=/2-x2 f(x)=x2-1/2 

y Iyl 
2Y 

Ax=0.05 
I0- 

Ax=0.05 
5 
2 

0~~~~~~~~~0 

1099+(I/2-x2)%+xy=0 10-9+(x2 -I/2)i+xy=0 

FIGURE 5.5 FIGURE 5.6 
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f =O.OZ5 ry f is 

-10.5 resu2 

yI ?I 

2 -~~~~~~~~~~~~~~~ 

10 Y+]X~y(X-1/2) YO 1o-7y10 Ax1/0.I 

Ax=0.05 

I02 

f (x)=sin7x f()1x 

Pe0tPeason's Rsl 

Ax=0.025 Ax02- 

-8 3 o~7~+IxI~+/2y=O 

10 Y9+(sIXIz x)2y+(x-I/2)4y=O x"( 2 

FIGURE 5.7 FIGURE 5.8 

f 

0 202 f (x)=sin2 7X f (x)=1x2 

Y A 
300- Pearsons Result 

y ~~~~~~~~~~~~/x:0.05\ 
2 - Ax=0.05 200h - 

Ax=0.025 
Ax=0.025. 

Ax=0.013 ~ 

tPearson's 
Result2L - _ 

02 
-1 0 1 0-1l 
l0F7 "+(sinirx) 2~+(X-o)y=0 lo,,9+(l-x 2)y+Xy:0 

FIGURE 5.9 FIGURE 5.10 
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f lf 

f (x)=x3 f (x)=x3 

Y 3 cycles of oscillations with amplitude-1020 
2 -_ _ _ _ _ _ _ _ 

150 - 
Pearson's Result 

100 
Ax=0.2 / 

50- 

-1 0 1 -1 -0.5 0 X05 I 
I08+x3-y=0 Pearson's Result for ?0 2'~ X 

Vibration case f(0)=0 In this case, our method is unstable 

FIGURE 5.11 FIGURE 5.12 

y 

2 / 

2 __ / Exact solution 

/ \~~~~~~~~~Ax=0.I 

-I ~ ~ X ? I 

0 ~~~~0-I 

\0-7y(xt 12 x2)y+(- 1/2 x cos x~y=A(-3+sExact solution y=cos irx 
- FU 0 

10-79+(X+ 1/2 X2)~t(-+ 1/2 x cos x)y=X(-3+sin(xi-cos x)) Elliptic equation 

FIGURE 5.13 FIGURE 5.14 
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/\x=0.05 ~ ~ ~ ~ ~ ~ ~ ~~~~A=00 /-/ 

Exact = I 
solution 

O.5r' 

__ ": Exact solution 

IBM Thomas J. Waton Research Cente 

Y o x=0.e 5 / 
0k 

Ax=O~~~~~~~~~~l ~~OY+Ixly-y=12XlO-7X2+ 
-I / ,' ~~~o7-kxI+y= 41xlx3-x4 

12 X10-7X2 + ~ Exact solution Ii ~~12x10x3+x y=X4 
I 41x~~~~x3+x4 ~~~Elliptic equation 

-2 1~~~~~~ ~Exact solution -2 - Y= 
X4FIGURE 5.16 

Non elliptic 
I ~~~~equation 

-3 - 

-I ~0I 

FIGURE 5.15 

IBM Thomas J. Watson Research Center 

Yorktown Heights, New York 10598 
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